Обзор накопителей (аккумуляторов) энергии
Введение
При производстве электроэнергии необходимыми составляющими в цепочке являются накопитель энергии и электрогенератор. Для традиционных способов генерации электроэнергии накопитель энергии находится перед электрогенератором. Например, вода, запасенная в водохранилище гидроэлектростанции, обладает гравитационной энергией и может расходоваться по мере надобности для вращения турбин электрогенератора. На тепловой электростанции энергия вначале запасается в виде угля, мазута или газа, которые также используются в соответствии с потребностями. На атомных электростанциях роль накопителя выполняет ядерное топливо. Вышеприведенные электростанции могут работать в режиме постоянной мощности, изменяя ее только при изменении энергопотребления. При производстве электрической энергии с использованием так называемых альтернативных источников (например, ветер, солнце) возникает проблема непостоянства их мощности, которая отсутствует при производстве энергии традиционными способами. Поэтому необходимо энергию источника вначале запасти в накопителе энергии, а затем уже расходовать энергию накопителя, преобразуя ее, например, в электрическую энергию в необходимом количестве. При этом накопитель будет играть роль демпфирующего устройства, сглаживающего колебания мощности источника. Стоимость накопителя играет существенную роль в цене производимой электроэнергии [11].
Помимо вышесказанного накопители энергии могут применяться и для других целей, например, для генерации сильных и сверхсильных магнитных полей [5, 7, 10].
Соотношение между единицами измерения энергии
1 кВт · час = 1000 Вт · 3600 с = 3600000 Дж = 3.6 МДж
1 кВт · час | 3.6 МДж |
0.1 кВт · час | 360 кДж |
1 МДж | 0.278 кВт · час |
100 кДж | 27.8 Вт · час |
Примеры накопителей энергии [3, 6]
1. Конденсаторный накопитель [2]
При емкости конденсатора 1 Ф и напряжении 250 В запасенная энергия составит: E = CU2 /2 = 1 ∙ 2502 /2 = 31.25 кДж ~ 8.69 Вт · час. Если использовать электролитические конденсаторы, то их масса может составить 120 кг. Удельная энергия накопителя при этом 0.26 кДж/кг. При работе накопитель может в течение часа обеспечивать нагрузку не более 9 Вт. Срок службы электролитических конденсаторов может достигать 20 лет. Ионисторы по плотности запасаемой энергии приближаются к химическим аккумуляторным батареям. Достоинства: накопленная энергия может быть использована в течение короткого промежутка времени.
2. Гравитационные накопители
Копрового типа [5]. Вначале поднимаем тело массой 2000 кг на высоту 5 м. Затем тело опускается под действием силы тяжести, вращая электрогенератор. E = mgh ~ 2000 ∙ 10 ∙ 5 = 100 кДж ~ 27.8 Вт · час. Удельная энергия 0.05 кДж/кг. При работе накопитель может в течение часа обеспечивать нагрузку не более 28 Вт. Срок службы накопителя может составлять 20 и более лет. Достоинства: накопленная энергия может быть использована в течение короткого промежутка времени.
Гидравлический. Вначале перекачиваем 10 т воды из подземного резервуара (колодца) в емкость на вышке. Затем вода из емкости под действием силы тяжести перетекает обратно в резервуар, вращая турбину с электрогенератором. Легко обеспечить разницу высот 10 м. Тогда E = mgh ~ 10000 ∙ 10 ∙ 10 = 1 МДж = 0.278 кВт · час. Удельная энергия 0.1 кДж/кг. При работе накопитель может в течение часа обеспечивать нагрузку не более 280 Вт. Срок службы накопителя может составлять 20 и более лет. Достоинства: при использовании ветродвигателя последний может непосредственно приводить в движение водяной насос, вода из емкости на вышке может использоваться для других нужд.
3. Маховик [3, 4]
Энергия, запасаемая в маховике, может быть найдена по формуле E = 0.5 J w2 , где J - момент инерции вращающегося тела.
Для цилиндра радиуса R и высотой H:
J = 0.5 p r R4 H
где r - плотность материала, из которого изготовлен цилиндр.
Предельная линейная скорость на периферии маховика Vmax (составляет примерно 200 м/с для стали).
Vmax = wmax R или wmax = Vmax /R
Тогда Emax = 0.5 J w2max = 0.25 p r R2 H V2max = 0.25 M V2max
Удельная энергия составит: Emax /M = 0.25 V2max
Для стального цилиндрического маховика максимальная удельная энергия составляет приблизительно 10 кДж/кг. Для маховика массой 100 кг (R = 0.2 м, H = 0.1 м) максимальная накопленная энергия может составлять 0.25 ∙ 3.14 ∙ 8000 ∙ 0.22 ∙ 0.1 ∙ 2002 ~ 1 МДж ~ 0.278 кВт · час. При работе накопитель может в течение часа обеспечивать нагрузку не более 280 Вт. Срок службы маховика может составлять 20 и более лет. Достоинства: накопленная энергия может быть использована в течение короткого промежутка времени, характеристики могут быть существенно улучшены [3, 4].
4. Химическая аккумуляторная батарея [1]
Свинцово-кислотная аккумуляторная батарея емкостью 190 А · час с выходным напряжением 12 В при 50 % разрядке может выдавать ток величиной 10 А примерно 9 часов. Запасенная энергия составляет 12 ∙ 10 ∙ 9 = 1.08 кВт · час ~ 3.9 МДж за цикл. При массе батареи 70 кг удельная энергия составит 56 кДж/кг. При работе аккумулятор может в течение часа обеспечивать нагрузку не более 1080 Вт. Срок службы аккумулятора составляет 3 ... 5 лет. Достоинства: от аккумулятора можно получать непосредственно электрическую энергию, выходной ток может достигать величины порядка тысячи ампер, выходное напряжение 12 В соответствует автомобильному стандарту, имеется множество устройств, работающих непосредственно от источника постоянного напряжения 12 В, имеются преобразователи 12/220 В различной мощности [8, 9].
5. Пневматический накопитель
В стальной резервуар емкостью 1 м3 закачивается воздух под давлением 50 атмосфер. Чтобы выдержать такое давление, стенки резервуара должны иметь толщину примерно 5 мм. Сжатый воздух используется для выполнения работы. При изотермическом процессе работа A, совершаемая идеальным газом при расширении в атмосферу, определяется формулой [12]:
A = (M / m ) R T ln (V2 / V1 )
где M - масса газа, m - молярная масса газа, R - универсальная газовая постоянная, T - абсолютная температура, V1 - начальный объем газа, V2 - конечный объем газа. С учетом уравнения состояния для идеального газа (P1 V1 = P2 V2 ) для данной реализации накопителя V2 / V1 = 50, R = 8.31 Дж/(моль · град), T = 293 0K, M / m ~ 50 : 0.0224 ~ 2232, работа газа при расширении 2232 ∙ 8.31 ∙ 293 ∙ ln 50 ~ 20 МДж ~ 5.56 кВт · час за цикл. Масса накопителя примерно равна 250 кг. Удельная энергия составит 80 кДж/кг. При работе пневматический накопитель может в течение часа обеспечивать нагрузку не более 5.5 кВт. Срок службы пневматического накопителя может составлять 20 и более лет. Достоинства: накопительный резервуар может быть расположен под землей, в качестве резервуара могут использоваться стандартные газовые баллоны в требуемом количестве с соответствующим оборудованием, при использовании ветродвигателя последний может непосредственно приводить в действие насос компрессора, имеется достаточно большое количество устройств, напрямую использующих энергию сжатого воздуха.
Ниже приведена таблица с параметрами рассмотренных накопителей энергии.
Накопитель энергии | Характеристики возможной реализации накопителя |
Запасенная энергия, кДж |
Удельная запасенная энергия, кДж/кг |
Максимальное время работы на нагрузку 100 Вт, минут |
Срок службы, лет |
Конденсаторный | Батарея емкостью 1 Ф, напряжением 250 В, масса 120 кг |
31.25 | 0.26 | 5.2 | до 20 |
Копровый | Масса копра 2 т, высота подъема 5 м |
100 | 0.05 | 16.7 | более 20 |
Гидравлический гравитационный |
Масса воды 10 т, высота перекачки 10 м |
1000 | 0.1 | 167 | более 20 |
Маховик | Стальной маховик массой 100 кг, диаметр 0.4 м, толщина 0.1 м |
1000 | 10 | 167 | более 20 |
Свинцово-кислотный аккумулятор |
Емкость 190 А · час, выходное напряжение 12 В, масса аккумулятора 70 кг |
3900 | 56 | 650 | 3 ... 5 |
Пневматический | Стальной резервуар объемом 1 м3массой 250 кг со сжатым воздухом под давлением 50 атмосфер |
20000 |
80 |
3300 |
более 20 |
Помимо рассмотренных существуют и другие накопители энергии, например, индукционные, пружинные, тепловые.
Ссылки:
10.09.2007
18.01.2009
20.10.2010
Альтернативные источники энергии
Компьютеры и
Интернет
Магнитные поля
Механотронные системы
Перспективные
разработки
Электроника и
технология